Observer et mesurer les déformations des systèmes naturels

Contribution à l'évaluation des risques sismiques et volcaniques

Pr. François Beauducel

Institut de physique du globe de Paris (IPGP) Sorbonne Paris Cité, Univ. Paris Diderot, CNRS UMR 7154

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
●0000000	000000000000000000000	0000000000000	0000000000000000	၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	0000000	0000
Risqu	ie et aléa					

$\begin{array}{l} \mbox{Définition} \\ \mbox{Risque} = \mbox{Aléa} \times \mbox{Enjeu} \times \mbox{Vulnérabilité} \end{array}$

Risques o●oooooo	Séismes 000000000000000000000000	Volcans 0000000000000	Observatoires cocococococococo	Déformations 00000000000	000000000000000000000000000000000000000	Mesures 0000000	F
Ris	sque volcanique						
al	éas	enje	ux vul	nérabilité	prévention		L
cc ex té ni la ga	pulées de lave xplosions iphras uées ardentes hars valanches de débris az	habi infra trafi	itations oui astructures c aérien		aménagement territ alerte / évacuation paravolcanique ?	oire	

Risques 0000000	Séismes 00000000000000000000000000000000000	Volcans cococococococo	Observatoires 0000000000000000000	Déformations 00000000000	000000000000000000000000000000000000000	Mesures 0000000	P o
Ris	sque volcanique						
al	éas	enje	ux vi	ulnérabilité	prévention		
co e> té ni la av ga	pulées de lave xplosions iphras uées ardentes hars valanches de débris az	habi infra trafi	tations oi structures c aérien	ui	aménagement territ alerte / évacuation paravolcanique ?	oire	

Risque sismique

aléas	enjeux	vulnérabilité	prévention
mouvements du sol (magnitude, distance, source, effets de site, glissements)	habitations infrastructures	oui/non	aménagement territoire parasismique ! alerte précoce ?

Risques 0000000	Séismes 00000000000000000000000000000000000	Volcans 0000000000000	Observatoires cocococococococo	Déformations 00000000000	000000000000000000000000000000000000000	Mesures 0000000	P
Ris	sque volcanique						
al	éas	enje	ux v	ulnérabilité	prévention		
cc e> té ni la av ga	pulées de lave cplosions iphras uées ardentes hars valanches de débris az	habi infra trafi	tations o hstructures c aérien	ui	aménagement territ alerte / évacuation paravolcanique ?	oire	

Risque sismique

aléas	enjeux	vulnérabilité	prévention
mouvements du sol (magnitude, distance, source, effets de site, glissements)	habitations infrastructures	oui/non	aménagement territoire parasismique ! alerte précoce ?

Risque tsunami			
aléas innondation (magnitude, effets de site)	enjeux habitations infrastructures	vulnérabilité oui	prévention aménagement territoire digues alerte précoce

Risques						
00000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

Contexte géodynamique

Risques						
00000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

Contexte géodynamique

3 grandes familles de volcans

- zones d'accrétion (milieu océanique ou continental)
- zones de convergence
- points chauds

2 grands types de volcanisme

- effusif (accrétion et points chauds)
- explosif (zone de subduction)

2 grands types de séismes

- subduction
- crustal

Production du magma: la fusion partielle

Zones d'accrétion

- augmentation de la température par amincissement de la lithosphère
- manteau supérieur à pression atmosphérique

Points chauds

- diminution de la pression par remontée "rapide" de roche fondue
- remontée adiabatique (sans perte de chaleur)

Zones de subduction

- apport d'eau dans le système
- rapprochement liquidus / géotherme
- liquide magmatique enrichi en volatiles (CO₂) provenant des sédiments marins carbonatés

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Zone de convergence: la subduction

- La plaque la plus lourde et les sédiments du plancher océanique s'enfoncent
- > 100 km = fusion partielle produisant un magma
- Une partie de ce magma plus léger se fraye un chemin jusqu'à la surface (poussée d'Archimède) et forme une chaîne de volcans
- Exemples d'arcs volcaniques continentaux: Chaîne des Cascades (USA), Cordillère des Andes, Kamchatka, Alaska, ...
- Exemples d'arcs volcaniques insulaires: Petites Antilles, Mariannes, Tonga, Arc de la Sonde (Indonésie), Japon, ...

Les Antilles: un laboratoire d'exception

 observer les phénomènes à l'échelle de la structure géologique qui les engendre collaborer avec les partenaires scientifiques de la Caraïbe

- grandes structures actives ?
- zones de blocage ?
- relation entre systèmes de failles ?

- fonctionnement des systèmes volcaniques ?
- relation éruptions/séismes ?
- quel risque tsunami ?

8 février 1843: séisme M > 8, $I_{max} = IX$

TREMBLEMENT DE TERRE DE LA GUADELOUPE.

En temblement de serce affreux vient de plonger dans la contraction la codorie de la Galdologe. La Postez-Firre n'enite plan? Cotte vile a robe, si bels, si pland de vin trofffer plan group moneres de rancer; par se toi papost ment debour, la reves nait destaire, la el dalos and à triret. Ce qui a c'écopargit par de termiliement, a été destai par l'ancende. Ene papadation prospirative enterrete son los devandems, con Unate et des havin par millers, le rome aux resurces na termi surces nar le bietire de certe fonderinate de destain que a millers, le rome aux resurces na termi surces nar le bietire de certe fonderinate de destain par

chiefe diractice par la spreaze, el qui sendiarent scener el dissortanzi in fusite ille de teste sue elle à pressi de carb mane model qui la fragger il la fremera, la endanzi, la brance se prépiet harri harri de par de cara diverse el pression de carao, la sociata distanza de teste de carao de la sociativa de participante de la sociativa de participante de la sociativa de la sociasita de la sociativa de la sociasita de la sociativa contexe el la sociativa de la sociativa de la sociativa de la sociativa de la sociasita de la sociativa contexe el la sociativa de la sociativa de la sociativa de la sociativa de la sociasita de la sociativa contexe el la sociativa del sociativa defensa de la menta de la sociativa de la sociasita de la sociativa contexe el la sociativa de la sociativa contexe el la sociativa de la sociativa dela sociativa de la sociativa dela sociativa de la sociativa de la sociativa dela sociativa de la sociativa de la sociativa dela sociativa

place and be offers. Les reviers en relations entre collegie de célesjent, cue le éta de la ville arricul parget ent. Le retate les que mue de la foise mension protection que al attent de norm de monses encoments, sont an aparte de 600 c. Les comos des pargetes entre encoments de construction de la construction de la construction de La state une fonde comos de la pargetes encoments de construction de la const

8 février 1843: une énigme ?

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000	၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	0000000	0000
1040		1.				

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	0000000	0000

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	000000000000000	000000000000000000000000000000000000	0000000	0000

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000000	ocoocococococococococococococococo	0000000	0000

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000	၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	0000000	0000
1040		•				

[Beauducel & Feuillet, AGU 2012]

- magnitude ≈ 8.5
- rupture compatible avec toutes les observations: intensités, absence de tsunami, déformations, subduction

Risques Séismes Volcans Observatoires Déformations Mesures PdF

21 novembre 2004: séisme M = 6.3, $I_{max} = VIII$

29 novembre 2007: séisme M = 7.4, $I_{max} = VIII$

Séisme du 29 novembre 2007 - 7,4M

Activité sismique quotidienne

Instrumentation de dernière génération

:s)000	Séismes 00000000000000000000000000000000000	Volcans 0000000000000	Observatoires 00000000000000000000	Déformations occococococococococococococococococo	Mesures 0000000	PdF 0000
SEFRA	N3: Sismologie OVPF SeedLink ratios Hiter Courses Seriette CVV7 2021 Hiter Courses Seat-th statistic reav 2021		2013-02-25 15:18 UTC 47-09			
2013-02-05 15 nuro						
2013-02-05 14h uro			* = - *	The on 1949		
13surc			PROZ	2014-05-30 12:45:57.92 UT 2014-05-30 12:45:57.92 UT by Alice Policy		~~~~
арта-од-аз 12 ь urc				Darabico: 0.08 s Type: Sommital Sation: PF.DSO.90.EHZ Amplitude: Forte Commact:		
2013-01-28 045-010		COLUMN AND A COLUMN AND A SALES	Billion	SC3 ID: 2014/05/30/ovpr/2014km Quality: 19 phases / M (confirme Trme: 2014-05/30712+04:87-468 Origin: 21.24*5 / 55.71*E / -0.8 V M = 1.782005	d) 3962 m	
2013-01-29 03h uto			FJSZ	······	······	~~~~~
2013-01-28 02h UTC			SNEZ	how when the how when we have the second seco	······································	humun
sono-on-se O1a uno	2013-01-28 0211563-68 UT by Valking Paradoni Curstion: 48.07 a Door: Scientification Science: Februari Curstion: Februari Science: Februari Curstion: Februari Curstion: Februari		BORZ			
0013-01-09 00n uto	507 83 - 2013/02/2016/02/2016 Config: 12 phases / H (con Nove, 2012-01-201702-3130 Copyrt 31,3297 / 357,717 / M2 = 1.32545457	Save Envestion K.272681.92 -0,5 km	FLRZ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mmmm
	个 lundi 28 ja	nvier 2013 UTC 个	FORZ	······································	mm	
Informatio	2005 Wood staff		RVLZ	······································		

		Automatica David Barris					84	ynal ete	latica -			BeedLink server 195.83.588.34				
"	Alles	Channel	(sourb/mb()	Offsel	(intel	019	ret /a)	Aaym.	FM5A (µm/k)	Acq.	Samp. (Hz)	Oldest data	Last data	Butter J	.T 84	letus
	2868	PF. 280.00.888	8.2210200-08	44.52	3e-5	1,0481	10%	9%	0,0632	100%	100	2013/02/05 12:05:00 8080	2013/02/25 15 16 13 4663	31.3	6	CK
2	122.2	PP.808.59.885	5-513050e-07	0.10	0e-5	0,7800	6N	- 0%	0.0499	100%	100	2013/02/24 21:02:21:9500	2013/02/25 15:15 13:2200	93 h (CK
2	CILE	PF.CIL.00.883	8.2544000-08	8.0	59-5	-5,7272	-25N	576	0,1346	100%	100	2013/08/55 12:22:34 2085	2015/02/05 15:18 12:5800	21	18	CK
4	****	PF.858.52.888	2,479470+407	44.50	3e-5	1,5344	176%	-2%	0,0491	100%	100	2013/02/24 19:55:55:5200	2013/02/25 15 19 12 3400	191-3	6	CK
5.		**.***.**	8.2115100-08	0.10	0e-5	10,0457	90N	-5%	0.0009	100%	100	2213/02/25 11:52:16.1083	2013/02/25 15:15:13:1000	Ohd		CK
4	43/2.2	PP. 882.00.883	8.2089050-08	4.10	59-5	-2,7198	-18%	-0%	0,4059	100%	100	2013/08/55 12:55 01 2085	2013/02/05 15:18 13 7040	21.2	16	CK
	daed	PF.050.51.888	7.553000+408	41/10	3e-5	0,0000	0%	-2%	0,1917	100%	100	2013/02/25 08:17:52 7200	2013/02/25 15 15:09.2500	61.6	6	CK
0.	809.2	FF. BOR. 00.882	2.4749550-67	8.10	0e-5	-0,0404	-1%	5%	0,1060	100%	100	2013/02/05 09:22:26:3000	2013/02/05 15:15 13:9500	61.5		CK
2	11.8.2	PF.FLA.00.888	8.22302300-008	4450	39-5	0,3512	3%	0%	0,0607	100%	100	2013/02/05 11:42:24 2485	2013/02/25 15 18 11 9662	40.4	16 1	CK
93.		PF. POR. 00.888	8.177950+-08	0.0	3e-5	-2,5232	187%	1%	0.0527	100%	100	2010/02/25 11:44 02:5082	2013/02/25 15:19 11:5060	41.4		CK
11.		FF. NVL. 00. HKS	8.1053500-08	8.10	5e-5	-0,0342	-0%	2%	0,1540	100%	100	2013/02/05 12:25:06:3983	2013/02/05 15:18 13:2200	ohi		CK
12	****	PF.NTR.92.888	2.5458100-07	4450	39.5	-1,6105	-64%	0%	0,0629	100%	100	2013/02/24 18:38:16:2100	2013/03/26 15 16 13 30:00	2011	6.	CK
13.		PF. TTR. 58.000	3 000000+400	0.0	3e-5	953,6753	25424N	\$55	0.0467	100%	100	2010/02/05 08:26:05:8083	2013/02/25 15:15 13:7903	76.3		145
14	7232	PP. PED. 00. EKS	1000000-08	8.0	59-5	68,7900	2084%	-0%	0,9900	100%	100	2013/08/55 11:22:55.8500	2013/02/05 15:18 13:0500	41.3	1.0	143
15.		PF. HOL. DD. HHE	8.345710-408	44.50	3e-5	-8,7905	-149%	15%	0,1106	100%	100	2013/02/05 12 18:07 0040	2013/02/25 15 16 13 5863	31	6	CK

Settan3 configuration file: SETRAN3, OVFF.conf

Channels parameters lis: SEPTIANS.OVTF .Channels.com!

	Séismes					
00000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

Main Courante Sismicité OVPF

[Notes | Sefran3]

	Md km	Sta1	Date	Heure	# Type	Amplitude	Dur.	S-P Signal	Sefran	Ор	Commentaire	É	plcentre	Prof.	M EN	S B3
1	8	RVL	2013-01-31	11:49:25.02	1 × Onde sonore	Faible	11.2 s	1000-		THS						
1	3	BOR	2013-01-30	15:45:01.68	1 × Effondrement	Moyenne	26.4 s	100	8 0000	FL						
1	3	NSR	2013-01-30	14:58:40.21	1 × Effondrement	Faible	8.1 s	100		FL						
1	3	BOR	2013-01-29	16:33:30.98	1 × Effondrement	Faible	13.9 s	1000		THS						
1	3	SNE	2013-01-29	14:19:32.02	1 × Effondrement	Faible	4.4 s	1000		THS						
1	2	DSO	2013-01-29	11:40:04.40	1 × Effondrement	Faible	5.7 s	elle		THS						
1	8	DSO	2013-01-29	02:44:24.86	1 × Effondrement	Faible	8.5 s			THS						
1	8	SNE	2013-01-29	01:05:59.72	1 × Effondrement	Faible	8.3 s			THS						
1	8	BOR	2013-01-28	18:36:36.22	1 × Effondrement	Faible	6.9 s	-		VF						
1	8	BOR	2013-01-28	16:32:39.37	1 × Effondrement	Faible	4.8 s	-		FL						
1	8	DSO	2013-01-28	16:00:12.59	1 × Effondrement	Faible	6.6 s	-		FL						
1	2	FLR	2013-01-28	11:28:45.81	1 × Effondrement	Faible	4.0 s	() () ()		FL						
1	2	FOR	2013-01-28	11:15:37.30	1 × Effondrement	Faible	4.6 s	0.00		FL						
1	2	SNE	2013-01-28	03:12:40.33	1 × Effondrement	Faible	5.3 s	elle		THS						
(1.4 3	DSO	2013-01-28	02:15:05.88	1 × Sommital	Faible	14.1 s	0.4		VF		M 0.3 km 🁔	Piton de la Fournaise	-0.6 1.	35 Md	I (II)
ï	8	FLR	2013-01-27	23:35:27.58	1 × Effondrement	Faible	7.6 s	(1)(THS			2013-01-2810	2:15:05.	276819Z	
1	8	FOR	2013-01-27	23:14:00.04	1 × Effondrement	Faible	4.2 s	100-		THS			Md =	- 1.35		1
1	2	FLR	2013-01-27	21:29:36.06	1 × Effondrement	Faible	3.6 s	1000-c-		THS			21.25°S 55. 0.3 km SSW P	iton de la	0.6 km a Fournaise	
1	2	BOR	2013-01-27	20:41:00.76	1 × Effondrement	Faible	4.5 s	0.00		THS			17 phases / ma	anual (co	nfirmed)	
1	2	BOR	2013-01-27	17:54:02.08	1 × Effondrement	Faible	4.7 s	0.00	÷	THS			ID = ovp	of2013bx	nb	
1	2	BOR	2013-01-27	16:59:26.94	1 × Effondrement	Faible	2.7 s	elle		THS						-
1	2	FOR	2013-01-27	13:47:51.65	1 × Effondrement	Faible	2.8 s	elle		THS						
		DOD	2012 01 27	12.07.05.70	1Ellendement	Colbia	210			тые						

REQUISE POP- 22 New 2011 00:02:42 - SESMONTEP-DUX, 1an - by Multial

Château Observatoire Abbadia, 4 février 2015

0000000 000000000000000000000000000000		Séismes					
	00000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

RAP: Accélérométrie

Localisation OVSG:	PGA (mg): TDHA: 166.437	PIGA: 11.106	
Date: 27-Dec-2004 20:58:14 +/	TDBA: 158.585	SROA: 10.438	
Lat = 15*49'39" N Lon = 61*36'10" W	ABFA: 47.299	IPTA: 7.166	
Prof = 9.57 km. Md = 4.7	JARA: 23.991	MOLA: 4.470	
Code - TE5GP	PRFA: 16.794	MESA: 4.468	
	GBGA: 14.054	SFGA: 3.592	

	Séismes					
00000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

Campagnes océanographiques

- Identification des failles actives
- Conséquence immédiate sur la gestion de crise

- AGUADOMAR [1998], GWADASEIS [2009], BATHYSAINTES [2010]
- Premier modèle géodynamique régional: failles en échelon et volcanisme actif

Magnitude vs Intensity

Magnitude vs Intensity

Modèle empirique de prédiction des intensités (B^3)

$$\begin{cases} I = 1.85265M - 0.0092238R - 3\log(R) + 0.3096\\ R > 10^{\frac{M-4.15}{2}} \end{cases}$$

Prédiction rapide des intensités sismiques

Communiqués séisme ressenti

- ▶ calcul « immédiat » après un événement (≈ 10 mn)
- prédiction des intensités maximales probables dans chaque commune
- en cas de faible séisme, permet de « rassurer » la population en confirmant leur ressenti
- en cas de gros dégâts + problèmes de communication, permet d'aider à focaliser l'action des secours

inica : WI-WII (D)

⁽⁾ rig = "mill ge" ett une unde d'acceleration correspondant au millement respect () rig = "mill ge" ett une unde d'acceleration correspondant au millement respect ()

Le risque volcanique dans le monde

Les grandes catastrophes historiques récentes

Tambora, Indonésie	1815	60 000	famine
Krakatau, Indonésie	1883	36 417	nuée ardente + tsunami
Montagne Pelée, Martinique	1902	29 000	nuée ardente
Nevado del Ruiz, Colombie	1985	25 000	lahar
Unzen, Japon	1792	15 1 18	tsunami
Laki, Islande	1783	9 336	famine
Santa Maria, Guatemala	1902	6 000	nuée ardente
Kelud, Indonésie	1919	5110	coulée de boue
Galunggung, Indonésie	1822	4 000	coulée de boue

Total depuis 1600 A.D.

pprox 300 000 morts

Risques Volcans Observatoires Mesures PdF

8 mai 1902: éruption Montagne Pelée, 29 000 morts

- nombreux précurseurs: séismes, explosions, cendres incandescentes, ...
- pas d'évacuation pour raisons politiques

Risques Seismes Volcans Observatoires Deformations Mesures Pdf 1976-1977: crise de la Soufrière, 72 000 évacués 000 évacués

Soufrière: crise sismo-volcanique 1975-1977

La crise en chiffres

- 7 mois d'activité de surface
- 16 000 séismes
- 26 éruptions phréatiques
- 800 000 m³ de matériaux éjectés + coulées de boue
- 73 422 personnes évacuées pendant 3 mois ¹/₂

2 hypothèses contradictoires...

- A purement phréatique sans risque
- B intrusion magmatique avec risque

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Soufrière: quel retour d'expérience ?

Arguments supporting purely phreatic eruption		Arguments supporting still-born magmatic eruption	
Nothing happened	1	•	
Surface observations (gas content, temperatures, ash) only phreatic	1		
Lack of any violent historical eruption at La Soufrière, small proportion of pyroclastic flows deposits [Tazieff, 1976]	×	Recent geological evidences [Boudon et al., 1987; 2008, Komorowski et al., 2005; 2008]	1
Frequent seismic crisis in the Caribbean without any eventual eruption (e.g. Montserrat) [Tazieff, 1976]	×	Posterior facts: St-Vincent 1979; Soufrière Hills 1995-present	4
No migration of seismic events during crisis [Tazieff, 1976]	×	Evidence for migration of seismic events [Hirn and Michel, 1979]	1
		Seismicity energy and magnetic anomaly [Feuillard et al., 1983]	*
•		Hot springs chemical modeling (degasing pulses of Cl) [Villemant et al., 2005]	1
Phreatic surface phenomena usually not followed by magmatic stage	×	Posterior facts: St-Helens, Pinatubo, Unzen, Soufrière Hills	1

Déficits de connaissance...

- rien sur le passé géologique
- méconnaissance des scénarios éruptifs
- peu d'expérience de suivi instrumental
- pas de modèle physique quantitatif

Risques Séismes Volcans Observatoires Déformations Mesures PdF <u>Soutérière: la réponse du passé éruptif</u>

Carte d'aléa volcanique de la Soufrière de Guadeloupe

[Boudon et al., 1986; Komorowski et al., 2005,2008]

- éruption type St-Helens 1530 AD
- nombreuses déstabilisations de flanc

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Soufrière: Les avalanches de débris

St-Helens 1980: 2000 évacués, 57 morts

Éruption du 18 mai 1980

- précurseurs = éruption phréatique + larges déformations
- évacuation préventive
- 3 km³ de roches éjectées
- 600 km² dévastés (jusqu'à 24 km)
- naissance de la volcanologie instrumentale : sismique, déformations et gaz

Risques	Volcans		
	00000000000000		

Prédiction: méthode empirique

Volcans

1995-2011: éruption Montserrat, 19 morts

2007: éruption Piton de la Fournaise

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Octobre-novembre 2010: éruption Merapi, 353 morts

Éruption centennale

- nombreux précurseurs inhabituels
- évacuation progressive
- $\blacktriangleright \approx 1\,000\,000$ évacués

	Observatoires		
	000000000000000000000000000000000000000		

Définition

surveiller. Observer attentivement quelqu'un, quelque chose pour comprendre son comportement ou le contrôler.

Risques		Observatoires		
		••••••••		

Objectifs de la surveillance des systèmes naturels

- acquérir des données d'observation
- comprendre les phénomènes
- améliorer la prévision/prédiction
- protéger les populations des catastrophes

	Observatoires		
	000000000000000000000000000000000000000		

Objectifs de la surveillance des systèmes naturels

- acquérir des données d'observation
- comprendre les phénomènes
- > améliorer la prévision/prédiction
- protéger les populations des catastrophes

Caractéristiques requises/souhaitées des observations

- continuité et régularité des mesures (spatiale et temporelle)
- long terme (adapté au phénomène)
- ► temps-réel ou quasi-réel (surveillance opérationnelle)
- notion d'incertitude (précision, redondance, artéfacts)
- méta-données (conditions d'acquisition)
- pérennité (archivage + documentation)

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Pourquoi des observatoires permanents ?

Observer / surveiller les phénomènes

- dans la continuité et sur le long terme
- anticiper, prévoir, protéger

Enjeux des observatoires outre-mer

- Risques telluriques plus importants que dans l'hexagone
- Contact rapproché avec les autorités / collectivités / population pour la gestion de crise et des risques

Volcans

Observatoires

Déformations Mes

res PdF 000 0000

Surveillance opérationnelle

Missions d'un observatoire volcanologique

- Surveillance du volcan actif:
 - comprendre les phénomènes
 - détecter un changement de comportement
 - l'évaluer en terme de potentiel éruptif
 - informer les autorités responsables
- 8 Recherche fondamentale en géosciences
- Information préventive et divulgation des connaissances en géosciences

Surveillance opérationnelle: quels outils ?

Objectifs

- Temps-réel : accès instantané à l'ensemble des données, toutes disciplines, dans une optique d'aide à la gestion de crise
- Archivage : centralisation des données et méta-données
- Partage : accès à un niveau d'information unique, télé-surveillance, support aux collaborations

Prévision des éruptions: approche déterministe

Questions posées

- Caractéristiques de l'aléa:
 - source magmatique / phréatique / instabilités
 - amplitude, volumes
 - localisation, directions
 - délais temporels
- Complexité des phénomènes

Prévision des éruptions: approche déterministe

Questions posées

- Caractéristiques de l'aléa:
 - source magmatique / phréatique / instabilités
 - amplitude, volumes
 - localisation, directions
 - délais temporels
- Complexité des phénomènes

Les besoins

- Données physiques et géométriques quantitatives
- Modèle phénoménologique

Ambivalence recherche/prédiction

Ambivalence recherche/prédiction

Axiome Prédiction = données temps-réel + modèle d'interprétation

Risques			Observatoires			PdF
00000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

Réseaux instrumentaux

Risques		Observatoires		PdF
		000000000000000000000000000000000000000		

Réseaux instrumentaux

Causes et effets d'une éruption

Les 4 causes d'une éruption

- réalimentation du réservoir
- cristallisation du magma
- interaction magma/eau
- instabilité mécanique de l'édifice

Signatures physico-chimiques associées

- séismes
- déformations
- modifications de la chimie des fluides
- variations d'autres paramètres géophysiques

⇒ Observer et mesurer...

... pour comprendre, prévoir et prédire.

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	00000000000000000	000000000000000000000000000000000000	0000000	0000
<u>c</u> .	1 · · · · · · · · · · · · · · · · · · ·	1. A.	1			

Sismologie: vibrations du sol

Risques			Observatoires			
00000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

Déformations du sol

Risques			Observatoires		
00000000	000000000000000000000000000000000000000	000000000000000	ಂಂಂಂಂಂಂಂಂಂಂಂಂಂ	000000000000000000000000000000000000000	0000000

Chimie des fluides

Observatoires

Déterminer la plomberie interne: tomographies

14 16 18 20 22 24 28 28 30 32

elevation 1200m

longitude utm (km)

Risques		Observatoires		
		000000000000000000000000000000000000000		

Sources de déformations

Observatoires Mesures PdF Déterminer l'état des contraintes

9 days before eruption of June 2000

3 days before eruption

[Brenguier et al., 2008]

0.1 - 0.1 0 relative velocity change (%)

Niveaux de surveillance et d'alerte volcanique

NIVEAUX D'ALERTE	ACTIVITÉ VOLCANIQUE OBSERVÉE	Délai prévisionnel avant déclenchement d'une éruption		ACTIONS OPÉRATIONNELLES	
		SOUFRIÈRE / MONTAGNE PELÉE	PITON DE LA FOURNAISE	par les scientifiques	par les autorités
vert PAS D'ALERTE	Minimate Niveau de base de l'ensemble des paramètres	Siècle(s) Années	Année(s) Mois	surveillance instrumentale (veille scientifique) recherche fondamentale information préventive maintien / mise à jour du plan de gestion scientifique d'une crise IPGP intégration de retour d'expérience (crises éruptives analogues)	maintien / mise à jour des plans de secours exercicos de gestion de crise (simulation) information préventive
Jaune VIGILANCE	En augmentation Apportion de signaux ellou variations de quelques paramètres au dessus du niveau de base, lité que : - aduité lasmique (généralement en on ressensite) - aduité funceoliteme et sources tienmales (funx, tempértures, composition d'unimaje) - légiese deformations du sof - instabilés de terrain (patit téoduements)	Année(s) Mois	Mois Semaine(s)	surveillance renforcée recharches ciblées informations à la cellule de gestion de crise IPGP et aux autorités buletins d'information périodiques information préventive renforcée (public, scolaires, milieux professionnels)	veille des services de l'état et colectivités éventuellement fermeture partielle de l'accès au volcan
orange PRÉ-ALERTE	Fortement sugmenties Augmentation importance dun ou plusieurs parameters pouvant être des précursans d'angoton, leis que : - activité saminge (elements fraquementer resents) - adarmations du sol - adarmations du sol - associate transmittés - associate transmittés - associate transmittés	Mois Semaines	Semaina(s) Jour(s)	surveillance active (astreintes 7/7) renforcement des moyens scientifiques de surveillance activation de la cellule de gestion de crise IPGP augmentation des builetins d'information maintien de l'information préventive renforcée	 constitution d'une ceitule de suivi à la Préfecture information à destination des services de l'état et des mairies (des zones concernées) fermeture de lacoès aux zones exposées du volcan et/ou de l'espace aérien
rouge ALERTE	Naximal Neau d'active de antémenent élevé assocé à plusieurs sofrancies possibles : - sexinité volcanique interne (elevines resentis, dejaits potentiel) - d'offrantitions majores du sa (ourcette de franctures, effortements) - activité funccollement attyrotothermale interne (func et tampératures devis de large activant selevis) - esplosions et projection de blocs, retornables de prosessionies, - esplosions et projection de blocs, retornables de prosessionies, - esplosions et projection de blocs, retornables de prosessionies, - esplosions et projection de blocs, retornables de prosessionies, - esplosions et projection de blocs, retornables de prosessionies, - esplosione de graz et pluse acides - oucle de bloce - oucle de bloce - extrainecturature et pluse acides	imminente I En cours		surveillamoa active renforcie (astrentes 2474) renforcament des moyens opérationnets e surveillance buletins d'information pluriquotidiens	constitution than PC data dor rate constitution than PC operationnon operations due to population concernite à l'évacuation : l'unarde et transformation éventaisté due PC en PC antée é transfert el accoul des populations dans les cantes chébergement

Ellipsoïde, géoïde et verticale

(GRS* 80) milligal = 10-5 m^{s-2} = 10⁻² mm^{s-2}

Définitions

- Géoïde = surface équipotentielle proche du niveau moyen des mers
- Verticale = direction du fil à plomb pointant vers le nadir en bas et le zénit* en haut = normale au géoïde
- Horizon = plan perpendiculaire à la verticale = surface d'un liquide au repos
- Latitude astronomique = angle de la verticale avec l'équateur
- Latitude géodésique = angle de la normale à l'ellipsoïde avec l'équateur

* selon l'orthographe préconisée par A. d'Abbadie
Risques Observatoires Déformations Mesures PdF

Géoïde terrestre: variations spatiales de la verticale

- anomalie positive sous l'Islande
- anomalie négative sous l'Inde

Variations temporelles de la pesanteur

Copyright @ 2004 Pearson Prentice Hall, Inc

Les marées terrestres

- Terre solide = déformations élastiques du globe liées à l'attraction Lune et Soleil
- Charge océanique = effet de charge/décharge et attraction de la masse d'eau

Conséquences

- ► Variations angulaires de la verticale = qq mas ≈ qq µrad
- Variations d'intensité de la verticale = qq µgal
- Variations du rayon terrestre = jusqu'à 50 cm !
- Mouvements de l'axe des pôles

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
					0000000	0000

Bruit microsismique

Origine

Houle océanique créant des ondes sismiques se déplaçant à 1-3 km/s dans la croûte terrestre

http://geoscope.ipgp.fr

Risques Séismes Volcans Observatoires Déformations Mesures PdF concession concession de déformations de déformations

Pourquoi un volcan se déforme-t-il ?

- Mouvements de fluides (magma, gaz)
 - Modèles = conditions aux frontières dynamique des fluides magmatiques / mécanique édifice:
 - géométrie des substructures internes (chambre et conduit magmatique, fractures)
 - paramètres des sources (ΔV , ΔP , $\Delta \sigma$, $\Delta \rho$)

Risques Séismes Volcans Observatoires Déformations Mesures PdF concession con

Pourquoi un volcan se déforme-t-il ?

- Mouvements de fluides (magma, gaz)
 - Modèles = conditions aux frontières dynamique des fluides magmatiques / mécanique édifice:
 - géométrie des substructures internes (chambre et conduit magmatique, fractures)
 - paramètres des sources (ΔV , ΔP , $\Delta \sigma$, $\Delta \rho$)

Géodésie + modélisation mécanique

- Aide à contraindre les sources et les structures à partir des déformations de surface
- Non-unicité des solutions: intégration d'autres observations (information a priori)
- Nécessité d'une méthodologie

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Mesures du champ de déformation

Techniques complémentaires

- Besoin d'observations spatiales et temporelles "continues"
- Classification des méthodes:
 - Échantillonnage spatial = ponctuel / réseau / imagerie
 - Échantillonnage temporel = périodique / continu / bande passante
 - Couplage = sol / télédétection
 - Paramètre mesuré = déplacement (1D/3D), angle, déformation
- Chaque méthode a ses avantages et artéfacts propres...

Mesures du champ de déformation

Techniques complémentaires

- Besoin d'observations spatiales et temporelles "continues"
- Classification des méthodes:
 - Échantillonnage spatial = ponctuel / réseau / imagerie
 - Échantillonnage temporel = périodique / continu / bande passante
 - Couplage = sol / télédétection
 - Paramètre mesuré = déplacement (1D/3D), angle, déformation
- Chaque méthode a ses avantages et artéfacts propres...

GPS/GNSS: déplacements 3-D "absolus"

 GIPSY-OASIS (JPL/Caltech) Precise Point Positioning référencement ITRF ⇒ 200 mm/yr 21°12'S 2620 m 2000 1500 1000 21°20'S 55°40'E 55°44'E 55°48'E

Last measurement 26-Jan-2013 11:50:00 12 Eastern =+0.460 m (-0.041 |+0.329 |=0.400) = Trend =+03.117 ± 0.717 metry (min(moy/ma) 2. Northern ==0.044 m (-0.107 |=0.020) =0.0046 = Trend ==-7.78 ± 0.105 mmyr 3. Wroten ==0.0446 m (-0.271 |=0.1616 + 0.107). Trend ==-0.781 ± 0.016 mmyr Risques

00 000

Volcans

00000 00000

)bservatoires

Déformations

sures PdF 00000 0000

GPS/GNSS: réseau étendu au Merapi

- nouveau réseau de surveillance installé en 2011 (Japon)
- étendu par 5 stations en 2013 (France), localisées entre 500 m et 6 km du sommet
- géométrie adaptée à la localisation de sources profondes et superficielles

GPS/GNSS: réseau étendu au Merapi

Network mean velocity (ITRF08)

Inclinométrie: niveaux à bulle

Déformations

Inclinométrie: pendules horizontaux

Inclinométrie: pendules horizontaux

Mesures PdF •୦୦୦୦୦୦୦୦୦୦୦୦୦ ୦୦୦୦୦ ୦୦୦୦

Nadirane: 140 ans plus tard

Projet Académie des Sciences

- partenariat IPGP
- J. Dercourt, J.-L. Le Mouël, J.-P. Poirier, M.-F. Esnoult, C. Brunet, F. Beauducel (2010)

Nadirane: 140 ans plus tard

(Days)

500

15

Couplage: installation de surface

 fractures = non linéaire

Risques		Déformations	PdF
		000000000000000000000000000000000000000	

Couplage: cavité naturelle

[OVSG-IPGP, 2010]

- ► ex: Fournaise
- effets de cavité
- non linéaire

[Ishihara, 1990; Dvorak & Dzurisin, 1997]

Couplage: solution "Merapi"

Risques Sélemes Volcans Observatoires Déformations Déformations Mesures Pd Piton de la Fournaise: forages peu profonds

 Riques
 Seismes
 Volcans
 Observatoires
 Déformations
 Mesures
 Pdf

 Piton de la Fournaise:
 forages peu profonds
 forages peu profonds
 forages
 forages

[Beauducel et al., 2010]

Piton de la Fournaise: forages 10 m

- variations diurnes = 0.002 °C
- marées terrestres
- bruit microsismique
- éruptions et pluies > 200 mm/h

Inclinométrie: signaux associés aux éruptions

Traitements a posteriori

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000		0000000	0000

InSAR: artéfacts troposphériques

Corrélation avec la topographie ?

- angle du rayon d'incidence + assymétrie:
- ▶ phase troposphère ≠ phase déformations
- modèle conjoint possible

Observatoires

InSAR: modélisation conjointe

[Massonnet et al., 1995]

[Beauducel et al., 2000]

[Cayol & Cornet, 1998]

Risques		Déformations	
		000000000000000000000000000000000000000	

InSAR: modélisation conjointe

[Beauducel et al., 2000]

- inversion conjointe troposphère
 + déformations
- délais troposphériques compatibles avec autres méthodes indépendantes

[Massonnet et al., Nature 1995]

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000		0000000	0000
N.4. 15	i ii					

Modèles: quelle complexité?

"Top 2" des modèles analogiques

- Point source (pression isotrope) en semi-espace élastique homogène [Anderson, 1936; Mogi, 1958]
- Discontinuité plane (faille) en semi-espace élastique homogène [Okada, 1985]

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000		0000000	0000
N A 1 N						

Modèles: quelle complexité?

'Top 2" des modèles analogiques

- Point source (pression isotrope) en semi-espace élastique homogène [Anderson, 1936; Mogi, 1958]
- Discontinuité plane (faille) en semi-espace élastique homogène [Okada, 1985]

A Z R median: μ or $E_{,V}$ μ or $E_{,V}$ source: ΔP or ΔV

Complexités requises

- sources et géométries multiples
- 3-D: topographie et structures
- Discontinuités du milieu (fractures)
- Rhéologies du milieu: anisotropie élastique, visco-élasticité, poro-élasto-plasticité...

Risques		Déformations	
		000000000000000000000000000000000000000	

Modèle de Mogi

Risques Observatoires Déformations Mesures PdF

Modèle de Mogi: surface de référence

а. **Reference Elevation Model**

[Williams & Wadge, 2000]

- demi-espace infini: quelle surface de référence ?
- Varying-depth model: première approximation de la topographie
- solution analytique simple: inversion possible

Risques Séismes Volcans Observatoires Deformations Mesures Composition Compositions Composition Compos

[Elsworth et al., 2008]

 cycles inflations/déflations

Risques Observatoires Déformations Mesures PdF

InSAR: déformations co-éruptives

[Tinard et al., 2005]

- Images **ENVISAT-ASAR** co-éruptifs
- Inversion ► géométrie dyke (8 param.) + ΔP

ASAR-ENVISAT Dataset [Tinard et al., 2005] 7654 Po February 2005 7652 7650 7648 Lava flow 02/11/05 to 03/18/05 ∆t = 35 davs - AA = 283 m 364

Vent location	Deforming area (10 ⁶ m ²)	Lava area (10 ⁶ m ²)	Lava volume (10 ⁶ m ³)	Deformation gradient (rad.km ⁻¹)	Interferograms available
Plaine des Osmondes Trou de sable	16.4	4.0	15.0	34.1 - 55.6	3 asc 4 desc.

InSAR: déformations co-éruptives

Meshdyke and 3D-MBEM (Cayol and Cornet)

InSAR: déformations co-éruptives

Neighbourhood Algorithm and Apraising (Sambridge, Fukushima)

One- and two-dimensionnal marginal Probability Density Functions for the September 2003 eruption best-fit dyke model. The contour interval is 0.2x the max, value. Parameters are well constrained with small uncertainties.

[Tinard et al., 2005]

Risques Observatoires Déformations Mesures

InSAR: déformations co-éruptives

September 2003

[Tinard et al., 2005]

East

Piton de la Fournaise: suivi temporel des intrusions

[Toutain et al., 1992]

- réseau inclinomètres
- localisation du centre d'inflation
- point de sortie de l'éruption
- pas d'estimation de volume

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Piton de la Fournaise: suivi temporel des intrusions

 $+50\ 000\ m^3$

 $+80\ 000\ m^3$

12/6/2014+10 000 m³

Château Observatoire Abbadia, 4 février 2015

 $+20\ 000\ m^3$

©IPGP

 $+160\ 000\ m^{3}$

Risaues Déformations PdF

Piton de la Fournaise: suivi temporel des intrusions

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000	000000000000000000000000000000000000	•000000	0000

Chaîne de mesure instrumentale

Métadonnées

- datation des échantillons: référence temporelle
- ▶ localisation du capteur: latitude, longitude, altitude
- description de la chaine d'acquisition: capteur, filtres, numérisation,

Les capteurs

Définitions

- capteur: élément permettant de traduire une grandeur physique (*le mesurande*) en un signal utilisable, généralement électrique
- étendue/plage de mesure: valeurs extrêmes pouvant être mesurées par le capteur
- ▶ résolution: plus petite variation de grandeur mesurable
- ▶ sensibilité: rapport de variation des signaux d'entrée/sortie
- précision: aptitude du capteur à donner une mesure proche de la valeur vraie (cf. sources d'erreurs)
 - fidélité/répétabilité: dispersion des mesures autour de la valeur moyenne (écart-type)
 - **justesse**: proximité de la moyenne à la valeur vraie
- réponse: rapidité, temps de réaction du capteur

Risques Séismes Volcans Observatoires Déformations Mesures PdF

Les différents types d'erreurs de mesure

Risques			Mesures	
			0000000	

La réponse du capteur

Risques					Mesures	
00000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

La réponse du capteur

Modélisation

- fonction de transfert équivalente:
 - filtre d'ordre *n* (passe-bas, passe-haut, passe-bande)
 - pôles et zéros

Risques

Volc

0000000000

res PdF

Référence temporelle

Référence temporelle

Solutions

- datation des données:
 - *T*₀ + pas d'échantillonnage
 - \bullet $t_0, t_1, \dots t_n$
- horloge intégrée au numériseur:
 - généralement peu précise
 - dérive > 1 s/jour
- GPS: horloge atomique
 - précision 14 à 100 ns
 - correction de l'horloge interne (acquisition rapide)
 - datation directe des échantillons (acquisition lente)

Risques 00000000 Volcan

00000000000

Observatoires 0000000000000000

Mesures PdF 0000000 0000

Format des données

of une foretre qui in these pas toujours ouverts si formis our ample, tamis que le minaux étaitent port dur un neur tris bas d' solice : les volets à bois dans toujour formis (il my avait pa, de vitrage): le mur stait coper à l'est. serve to ing and edus Sailest Can la Sejection N. et S. un anter Sail plan E. A.O. I f' avait the place Diagonalement mais it we put pay the observe by niverango N. et S. Juscus ton our observes In cole tourne seer & pole Nordel laterre. les variations have la table duivante dont au pastie les suiveaux & nigran E of O. stait observe In at he 1'Est. withaux N. of S. mixtan E. at O. 2 2 mars 8. 9 meter 5. 4 3 7.8 Sair 3.0 Matin a.o.M - 5.0 1.5 Soir 4.0 M - 0.6 11.0 Mata - 2.0 2/11 505 + 2.0 6.0 M 0.0 10.0 M - 3.6 minut +0.6 + 3.6 9.5 M - 0.8 0.0 6.0 S + 0.2 - 0.3 \$ 20 -1.3 30 M 297

Mesures de niveaux à bulle par Antoine d'Abbadie, Olinda, Brésil [1837]

Risques			Mesures	
			0000000	

Format des données

Sismologie

- formats propriétaires: presque autant que de numériseurs...
- plusieurs formats standards de traitement: SAC, SEGy, SUDS, AH, GSE, ...
- un format d'échange et d'archivage: SEED
 - permet d'intégrer tout type de série temporelle (T₀ + S.F)
 - web-services, outils de requêtes, archivage (arclink)
 - protocole de flux temps-réel (seedlink)
- un site communautaire: www.orfeus-eu.org

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000	၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	○○○○○●○	0000

Format des données

Sismologie

- formats propriétaires: presque autant que de numériseurs...
- plusieurs formats standards de traitement: SAC, SEGy, SUDS, AH, GSE, ...
- un format d'échange et d'archivage: SEED
 - permet d'intégrer tout type de série temporelle (T₀ + S.F)
 - web-services, outils de requêtes, archivage (arclink)
 - protocole de flux temps-réel (seedlink)
- un site communautaire: www.orfeus-eu.org

GPS

- formats propriétaires: *Trimble, Leica, Ashtech, Topcon,* ... autant que de récepteurs!
- un unique format standard: RINEX
- un outil de conversion / traitements: teqc (UNAVCO - libre)

Risques	Séismes	Volcans	Observatoires	Déformations	Mesures	PdF
00000000	00000000000000000000000000000000000	0000000000000	0000000000000000	000000000000000000000000000000000000	0000000	0000
_						

Format des données

Sismologie

- formats propriétaires: presque autant que de numériseurs...
- plusieurs formats standards de traitement: SAC, SEGy, SUDS, AH, GSE, ...
- un format d'échange et d'archivage: SEED
 - permet d'intégrer tout type de série temporelle (T₀ + S.F)
 - web-services, outils de requêtes, archivage (arclink)
 - protocole de flux temps-réel (seedlink)
- un site communautaire: www.orfeus-eu.org

GPS

- formats propriétaires: *Trimble, Leica, Ashtech, Topcon,* ... autant que de récepteurs!
- un unique format standard: RINEX
- un outil de conversion / traitements: teqc (UNAVCO - libre)

Séries temporelles

- pas de format standard
- sensorML (OGC Network)
- solution SEED

					Mesures	
00000000	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000	0000

Transposition fréquentielle

Principe

- transposer les fréquences d'un signal dans le domaine audible (20 Hz - 16 kHz)
- principales applications:
 - appareils auditifs
 - télécommunications

Sismicité volcanique

- fréquences: 1 à 10 Hz
- infrasons (inaudible)
- vitesse de lecture ×200
 - \Rightarrow 200 Hz à 2 kHz
 - = bande téléphonique!

Piton de la Fournaise: éruption du 20 juin 2014

Piton de la Fournaise: éruption du 20 juin 2014

Méthode de prédiction

- STS-1
- composantes horizontales en accélération
- correction de la marée terrestre
- calcul du jerk

Eastern tide: \times 1.55816, Δt = + 1h 34m 25 s Northern tide: \times 1.28168, Δt = + 1h 51m 27 s

Risques Séismes Volcans Observatoires Déformations Mesures PdF Occomposition <

Transposition fréquentielle

- signaux sismiques normalisés
- ▶ 2 stations \rightarrow stéréo
- ▶ 100 Hz \rightarrow 20 kHz
- ▶ 48 heures \rightarrow 15 mn
- fichier MP3

Risques Séismes Volcans Observatoires Déformations Mesures PdF Piton de la Fournaise: éruption du 20 juin 2014

Transposition fréquentielle

- signaux sismiques normalisés
- ▶ 2 stations → stéréo
- ▶ 100 Hz \rightarrow 20 kHz
- ▶ 48 heures \rightarrow 15 mn
- fichier MP3

À découvrir...

- alternance de volcano-tectoniques (secs) et d'éboulements (doux)
- 01'15" hélicoptères
- 06'00" fracturation
- ▶ 06'21" éruption (trémor)
- 12'20" fin de l'éruption

