Conférences de l'Académie des Sciences Chateau-Observatoire Abbadia 23 janvier 2019

Du bruit de fond sismique aux cataclysmes telluriques : Mesures, images et théories

Pascal Bernard, IPGP

Microséismes à Abbadia

Fig. 1. Example case (Bernard, 1961) of a microseismic storm registered at Parc Saint Maur and Abbadia (Curves 1–2) with the depression responsible for it. The maximum amplitude of microseisms, December 17th, is repeated in the latter station at the same time as the swell arrives to the far end of the Bay of Biscay (curve 3: state of sea). This swell is felt on the Morocco coast the day after (curve 4).

Séisme de Haiti, 2010,

M=7.1 240 000 morts

Séisme de Tohoku 2011 M=9.0 30 000 morts

MAGNITUDES ET LONGUEUR DE RUPTURE SUR LES FAILLES

Magnitude 4 = 1 km - ressentie – pas de dommages Magnitude 6 = 10-20 km – dommages aux structures Magnitude 8 = 100-200 km – destructions généralisées

World Seismicity: 1975 - 1995

Convection du manteau terrestre

SEISME D'IZMIT DE 1999, TURQUIE, M=7,5

Imagerie des grands séismes

Sismomètres asservis « Large bande » spectrale

Réseaux sismologiques permanents

Réseaux denses temporaires

Réseaux denses d'accéléromètres : Japon

EMSC

Séisme de Tohoku, Japon 2011, M=9.0

Noguchi and Dr.Furumura

http://www.eri.u-tokyo.ac.jp/PREV_HP/outreach/eqvolc/201103_tohoku/eng/

Séisme de Tohoku 2011, M=9.0

Réseaux denses : Analyses d'antennes

sismogrammes

Séisme de Tohoku 2011, M=9.0

Réseaux dense = antennes

Sources de Haute fréquences € → Accélérations 2 g

Réseau mondial

Source de basses fréquences

Glissement de 50 m → tsunami Perturbation de la gravité avant l'arrivée de l'onde P

MAJO 427km

-1500

-1000

-500

M=9.0

Imagerie des petits et micro-séismes

Kato et al. 2012

Rift de Corinthe : migration de l'essaim sismique de 2004

Duverger et al., 2018

Corinth Rift

1km

ultiplets of the

2003-2004 seismic crisis

22'06'00"

22'07'30"

22'09'00"

50 m/jour

Trémors tectoniques : des failles qui murmurent

Subduction de Nankai, Japon

imagerie des sources du bruit microsismique

Bruit de fond microsismique

0	1	2	3
	Source	e (Pa ² m ²	s)×10 ¹²
0		0.5	1
	Poo	mnowor	

Sources d'ondes P d'après les hauteurs de vague

Sources d'ondes P d'après les antennes sismiques

Ward Neale, 2018

Se rapprocher des sources sismiques :

les grands défis

SAFOD Observatoire profond Faille de San Andreas Forage profond 3.2 km

a alamy stock photo

S-NET 150 observatoires sous-marin : Sismomètres/ pressiomètres 1600 km de cable optique

Sismomètre SEIS sur Mars

Mission INSIGHT 5 mai -26 nov 2018 0.5 Milliards de km

NASA Lognonné et al., IPGP, CNES

Des sismomètres innovants sur fibre optique

Mesure de déplacement et déformation par interférométrie optique

- + longue fibre entre station et capteur \rightarrow 50 km
- + pas d'éléctronique au capteur :

opto-mécanique simple, robuste, peu couteux

- + fibre optique insensible au champ EM (foudre, lignes HT, ..)
- + température élevée (250°C) (pas d'électronique)

Application pour les risques naturels en

environnement difficile:

Offshore lointain, forage profond, région montagneuse, volcans,..

Systèmes DAS « Distributed Acoustic Sensing »

Interrogation de fibre optique 1 capteur de déformation / m !

Jousset et al, 2018

Sismomètre opto-mécanique IPGP- ESEO

Bernard et al., 2012

instruments et réseaux pour les observations géodésiques

GNSS Global Navigation Satellite System

- GPS USA
- GLONASS russe
- GALILEO européen
- COMPASS Chine 2020

En 25 ans : précision $1 \text{ cm} \rightarrow 1 \text{ mm}$

Imakiire & Kobayashi, 2011

Géodésie sous-marine : GPS + Transpondeurs acoustiques

A Horizontal displacements

B Vertical displacements

Noda et al. 2018 Sato et al 2011

Interférométrie Radar par Satellite : InSAR

Séisme de Tohoku, 2011 139° 42° 142* 140 141* 13 Envisat ESA GEO Processed by LSGI/PolyU Track 347: 2011/02/19-2011/03/21 Track 74: 2011/03/02-2011/04/01 41° -Aomori 40° Akita 39° Yam 38° 37° Disp.[cm] Utsuno Mw7.4 36 100km 141° 142* 13 139° 140°

Feng et al. 2012

Séisme de Tohoku 2011

GPS à 10 Hz = sismomètre !

Couplage de la subduction - Chili GPS - glissement lent permanent

Des failles capricieuses :

Glissement lents transitoires

SSE = « slow slip events »

Glissements transitoire : Subduction des Cascades

Displacement (mm)

Glissement transitoire et essaim sismique au Pérou

Moment magnitude SSE: 6.7 ³⁄₄ of total moment release

Villegas-Lanza et al. 2015

Signal de gravité présismique du séisme de Tohoku, 2011

Satelite GRACE, h=500 km

Il n'y a pas que le GPS et l'InSAR pour voir les failles glisser ... Extensomètres de puits

- Cylindres en acier, déformables, de 3 m de long, remplis d'huile
- Cimentés en puits 150-300 m
- Pression des roches \rightarrow pression de l'huile, détection capacité ou EM

Résolution court terme : déformation de 10⁻¹⁰ (10⁻⁶ pour le GPS)

Sacks-Evertson

Inclinomètres hydrostatique longue base

- Niveau à eau
- Galerie souterrain, mine longueur 50 m 500 m
- inclinaison du sol ↘ variation de niveau d'eau aux extrémités,
 détection capacité, EM ou optique laser

Résolution : inclinaison de 10⁻⁹ radians

Glissement précurseur du séisme d'Iquique, M=8.0, 2014

Inclinomètre longue base

Boudin et al., 2016

5 mm

Satriano et al., 2014

Glissement accéléré des failles avant les grands séismes déduits de la microsismicité

Comment voir la Terre se déformer en analysant le bruit microsismique ambiant

Corrélation de bruit

Duvall et al. ,1993 Weaver & Lobkis, 2001 Campillo et Paul, 2003

sismogrammes de bruit

- Corrélation entre les sismogrammes

 \rightarrow ~ réponse impulsionnelle du milieu ~ vitesses sismiques

Variation temporelle de la corrélation de bruit au Piton de La Fournaise

Brenguier et al. 2008

Séisme lent (SSE) 2006, Mexico

Rivet et al. ,2011

Epilogue : Sismicité induite au centre des USA

La cause :

Injection à grande profondeur des eaux usées de la production de gaz ou de pétrole

Source: USGS-NEIC ComCat & Oklahoma Geological Survey; Preliminary as of July 4, 2017

